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Abstract

Graph representations are traditionally used to represent protein structures in sequence

design protocols in which the protein backbone conformation is known. This infrequently

extends to machine learning projects: existing graph convolution algorithms have shortcom-

ings when representing protein environments. One reason for this is the lack of emphasis on

edge attributes during massage-passing operations. Another reason is the traditionally shal-

low nature of graph neural network architectures. Here we introduce an improved message-

passing operation that is better equipped to model local kinematics problems such as pro-

tein design. Our approach, XENet, pays special attention to both incoming and outgoing

edge attributes. We compare XENet against existing graph convolutions in an attempt to

decrease rotamer sample counts in Rosetta’s rotamer substitution protocol, used for protein

side-chain optimization and sequence design. This use case is motivating because it both

reduces the size of the search space for classical side-chain optimization algorithms, and

allows larger protein design problems to be solved with quantum algorithms on near-term

quantum computers with limited qubit counts. XENet outperformed competing models while

also displaying a greater tolerance for deeper architectures. We found that XENet was able

to decrease rotamer counts by 40% without loss in quality. This decreased the memory con-

sumption for classical pre-computation of rotamer energies in our use case by more than a

factor of 3, the qubit consumption for an existing sequence design quantum algorithm by

40%, and the size of the solution space by a factor of 165. Additionally, XENet displayed an

ability to handle deeper architectures than competing convolutions.

Author summary

Graph data structures are ubiquitous in the field of protein design, and are at the core of

the recent advances in machine learning brought forth by graph neural networks (GNNs).

GNNs have led to some impressive results in modeling protein interactions, but are still

not as common as other tensor representations.
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Most GNN architectures tend to put minimal emphasis on information stored on

edges; however, protein modeling tools often use edges to represent vital geometric rela-

tionships about residue pair interactions. We show that a more advanced processing of

edge attributes can lead to considerable benefits when modeling chemical data.

We introduce XENet and show it to have improved ability to represent protein struc-

tural data while allowing information about amino acid interactions to be stored on graph

edges. We use XENet to intelligently simplify the optimization problem that is solved

when designing proteins. This task is important to us and others because it allows larger

proteins to be designed on near-term quantum computers. We show that XENet is able to

train on our protein modeling data better than existing methods, successfully resulting in

a dramatic decrease in protein design sample space with negligible loss in quality.

Introduction

Protein design involves astronomically large search problems beyond the capabilities of even

the largest supercomputers. [1] This task traditionally involves assuming a static protein back-

bone and representing all candidate side-chain conformations and identities as discrete possi-

bilities called “rotamers”. [2–4] A single sequence position on the protein can have hundreds

of candidate rotamers when spanning all twenty native amino acids. The challenge is to find

one rotamer per variable position such that the value of some scoring function (typically an

approximation of the conformational energy of the structure given the rotamer selection) is

minimized. If the scoring function can be expressed as a sum of single-rotamer scores and

two-rotamer interaction scores, much of the expense of calculating this function can be shifted

to a pre-calculation which all possible one- and two-body energies are computed and stored in

a lookup table.

A selection of one rotamer per position that optimizes the scoring function may be found

by one of a number of approaches. For trivially small rotamer optimization problems, exhaus-

tive enumeration is feasible, but grows infeasible for most real-world problems since the num-

ber of possible solutions given N variable amino acid positions and D rotamers per position is

DN, scaling exponentially. Exact algorithms with strong guarantees of convergence to the

global optimum, such as those implemented in the Toulbar2 cost function solver, represent an

alternative that makes somewhat larger problems tractible. [5] Some of these algorithms,

including the dead end elimination/A� approach implemented in the Osprey protein design

package, can be efficiently parallelized on CPUs or GPUs, offering an up to M-fold speedup

given M computing cores. [6] Nevertheless, these algorithms are also limited by the exponen-

tial scaling of the solution space, which rapidly outpaces any speedup from parallelism. For

problems with tens of variable positions and thousands to tens of thousands of total rotamers,

it is necessary to use heuristic methods that do not offer guarantees of finding the global opti-

mum, such as the simulated annealing approaches implemented in the Rosetta software suite.

[7, 8] Because a protein designer is often interested in diverse near-optimal solutions rather

than in the single unique solution that optimizes the scoring function (which itself is often

approximate, so that the global optimum may not be the very best solution in reality), protein

designers often sacrifice the guarantee of finding the global optimum in favor of having a con-

venient means of rapidly sampling from the pool of near-optimal solutions. Indeed, recent

work has also sought means of sampling diverse near-optimal solutions, rather than a single

globally optimal solution, with exact solvers like Toulbar2 [9]. Given the exponentially-scaling

solution space, however, even heuristic methods cease to be effective at sampling the low-
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energy solutions for rotamer optimization problems with hundreds of variable positions or

hundreds of thousands of total rotamers.

Quantum computing offers a new alternative for solving these complex combinatorial

problems to power the development of new protein-based therapeutics and enzymes of indus-

trial interest—one with the prospect of scaling efficiently to much larger design problems. [10]

A register of Q qubits can, on measurement, adopt one of 2Q strings of 1s and 0s. Prior to mea-

surement, it can exist in a superposition of all of these 2Q possible observable states. If solution

states to a rotamer optimization problem can be mapped to qubit states, then a quantum com-

puter with a minimum of N log2 D qubits could in theory simultaneously consider all DN

solutions for a rotamer optimization problem with N variable amino acid positions and D rota-

mers per position. A suitable quantum optimization algorithm could then be used to shift the

relative probabilities of qubit states so that observation of a bitstring corresponding to an opti-

mal or near-optimal solution is highly likely on measurement. This provides a very efficient

means of sampling from the near-optimal solutions, one that can potentially surmount the

scaling limitations of classical heuristics, since exhaustive representation of the exponentially-

scaling search space is possible only on quantum hardware. In previous work using the

D-Wave 2000Q quantum annealer, we demonstrated how the protein design problem can be

expressed as a combinatorial optimization problem and solved using quantum annealing hard-

ware and hybrid quantum-classical solvers. [11] Critically, we were able to show the approach’s

applicability to real-world protein design problems without reducing the complexity of the

problem.

The D-Wave 2000Q and Advantage systems possess 2,000 and 5,000 qubits and can emulate

approximately 64 and 124 fully-connected qubits, respectively [12]. IBM’s largest gate-based

quantum computer to date allows coupling of any pair of qubits, but has only 65 qubits [13].

Although large problems can be divided into smaller problems that can fit in available qubits

using an outer classical algorithm like QBSolv [14], doing so eliminates the quantum scaling

advantage. There is therefore considerable interest in developing an intelligent approach to

pruning nonproductive rotamers from rotamer optimization problems to allow problems of

interest to fit on current and near-future quantum hardware with relatively small numbers of

qubits. Such an approach could also help classical rotamer optimization algorithms that are

limited by the size of the search space, as well as hybrid algorithms that use an outer classical

loop to divide a problem into sub-problems solved by an inner quantum algorithm.

This method used the Rosetta software suite to model these backbone-dependent rotamers

and to calculate the one- and two-body interactions between them [8, 15, 16]. Our goal was to

find the set of rotamers that minimizes the protein’s computed energy, measured in Rosetta

Energy Units (REU). Rosetta does this using simulated annealing, in a process called “packing”

and “rotamer substitution” [3, 17].

Mapping large protein design problems directly to quantum hardware was limited by a

number of factors including noise and the number of qubits available. Even using a hybrid

solver proved impractical for large problems as noise and time constraints effectively placed an

upper barrier to the size of problems that could be solved. Additionally, we have evidence that

the modeling of some atomic interactions, like hydrogen bonds, would be improved with a

finer granularity of rotamer sampling, suggesting that our problem has reason to grow even

larger [18].

Our goal for this project was to use machine learning to adaptively decrease sample space

for arbitrary protein design problems by eliminating rotamers from consideration. Scientists

are having rapidly-increasing success using artificial neural networks to design proteins using

a variety of representations [19, 20]. We have recently seen success representing proteins by

passing contact maps into image-inspired 2D convolutions [21, 22], 3D convolutions on
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voxelized representations [23, 24], and even language models on protein sequences [25–27].

However, the representation that interests us the most is the graph-based representation found

in graph neural networks [28–30].

Graphs are intuitive representations for protein modeling cases in which the backbone

structure is already established, as it is in protein design. In fact, traditional protein modeling

tools such as Rosetta use graphs internally to model interactions during their own protocols

[8, 31–33]. These residue-centric graphs represent each sequence position as a node, with

edges connecting positions that are close in 3D space. Node attributes generally encode the res-

idue’s backbone geometry and possibly some representation of its side-chain identity. Edge

attributes are used to model the interactions and geometry between residue positions.

Graph neural networks (GNNs) are a class of machine learning models designed to process

graph-structured data. While the seminal research on GNNs dates back to the works of Sper-

duti et al. [34], Gori et al. [35], and Scarselli et al. [36], recent research efforts have led to a

rapid growth of the field and have achieved state-of-the-art results on a large variety of applica-

tions, ranging from social networks [37–39], to chemistry [40, 41], biology [28, 42, 43], and

physics [44].

The growth of the field has led to the development of many diverse GNN architectures,

notably including the works in references [45–50]. Of particular interest to this work are those

models that can be expressed as message-passing architectures [51]. In particular, message-

passing GNNs act on the node attributes of a graph according to the following general scheme:

x0i ¼ gðxi;□j2N ðiÞ �ðxi; xj; eðj;iÞÞÞ; 8i 2 V ð1Þ

where ϕ is a message function that depends on the graph’s node and edge attributes (resp. X

and E), □ is any permutation-invariant operation that aggregates messages coming from the

neighborhood of i, and γ is an update function (see our Notation section on the next page for

the remaining symbols). Intuitively, message-passing GNNs transform the attributes of the

graph by exchanging information between neighboring nodes.

While the definition of Eq (1) allows the message function to depend on the edge attribute

between a node and its neighbor, the majority of GNN architectures are designed for non-

attributed edges. Among those GNNs that are designed to process edge attributes, we mention

the Edge-Conditioned Convolutions (ECCs) introduced by Simonovsky and Komodakis [52].

ECCs make use of an auxiliary model called a filter-generating network (FGN) that takes as

input edge attributes and produces output parameters that replace what conventionally would

be the learnable parameters of ϕ in Eq (1) that would ordinarily be fixed. ECCs can bring sig-

nificant advantages when processing graphs for which edge attributes are important and have

been used to process molecular graphs [53, 54]. However, the FGN can be difficult to train due

to the absence of a strong supervision signal (which is particularly difficult to achieve when

stacking many layers) and ECCs are mostly effective in processing edge attributes with a one-

hot representation.

In recent years, other types of GNNs have been proposed that process edge attributes

directly in the message function, without relying on a FGN. These usually concatenate [55] or

sum [56] the edge attributes to the node attributes of the neighbors. In particular, here we con-

sider the work of Xie et al. [55], based on concatenation, which we denote as CrystalConv in

the following.

We note, however, that all of the methods mentioned above suffer from two key issues.

First, none of them are designed to take into account the case of symmetric directed graphs

with asymmetric edge attributes (i.e., graphs for which the existence of edge (i, j) implies the

existence of edge (j, i) and vice versa, but the corresponding attributes can differ). This is
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particularly relevant for our work due to the geometric nature of our edge attributes: our edges

themselves have no directionality but nearly every edge feature has some degree of asymmetry.

Second, most existing methods are not designed to update edge attributes, which are consid-

ered as static inputs throughout the network. The updating of edge attributes is not a novel

idea per se, since it was proposed both in the Graph Network model by Battaglia et al. [57] and

in the Typed Graph Network of Prates et al. [58] (where both are works that attempt to unify

GNNs in a similar spirit to the message passing framework), but to the best of our knowledge

it is seldom applied in practice.

Here we propose XENet, a GNN model that addresses both concerns while also avoid the

computational issues introduced by FGNs. XENet is a message-passing GNN that simulta-

neously accounts for both the incoming and outgoing neighbors of each node, such that a

node’s representation is based on the messages it receives as well as those it sends. We demon-

strate XENet’s advantage over ECC and CrystalConv by testing their abilities to eliminate rota-

mer candidates in real-world protein design problems, with application both to decreasing the

solution space that must be searched by classical protein design algorithms, and to decreasing

the qubits required for quantum protein design algorithms.

Materials and methods

Notation Let a graph be a tuple G ¼ ðV; EÞ, with node set V ¼ f1; . . . ;Ng and edge set

E � V � V s.t. ði; jÞ 2 E is a directed edge from node i to node j. Additionally, let xi 2 R
F

indi-

cate a vector attribute associated with node i and let ei;j 2 R
S

indicate a vector attribute associ-

ated with edge (i, j). We indicate the neighborhood of a node with N ðiÞ ¼ fj j ðj; iÞ 2 Eg.
Note that in our case we consider symmetric directed graphs, so that the incoming and outgo-

ing neighbors of a node coincide.

To make notation more compact, in the following we denote with X 2 RN�F
the matrix of

node attributes, with E 2 RN�N�S
the matrix of edge attributes (we assume the entries of this

matrix to be zero if the corresponding edge does not exist), and with A 2 {0, 1}N×N the binary

adjacency matrix of the graph.

XENet

Our architecture, which we refer to as XENet (due to its ability to convolve over both X and E

tensors), is described by the following Equations:

sij ¼ φðsÞ xikxjkeði;jÞkeðj;iÞ
� �

ð2Þ

sðoutÞi ¼
X

j2N ðiÞ

aðoutÞðsijÞ � sij ð3Þ

sðinÞi ¼
X

j2N ðiÞ

aðinÞðsijÞ � sji ð4Þ

x0i ¼ φðnÞ xiks
ðoutÞ
i ks

ðinÞ
i

� �
ð5Þ

e0
ði;jÞ ¼ φðeÞ sij

� �
ð6Þ

where φ(s), φ(n), φ(e) are multi-layer perceptrons with Parametric Rectified Linear Unit
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activations [59], and where a(out) and a(in) are two dense layers with sigmoid activations and a

single scalar output.

The core of XENet lies in the computation and aggregation of the feature stacks sij in Eqs

(2)–(4). These are obtained by concatenating the node and edge attributes associated with the

incoming and outgoing messages (Eq (2)), so that the multi-layer perceptron φ(s) learns to pro-

cess the two directions separately. The feature stacks are also aggregated separately in the two

directions of the flow, using self-attention [60] to compute a weighted sum (Eqs (3) and (4)).

The separate representations are concatenated and used to update the node attributes of the

graph (Eq (5)). Finally, some additional processing of the feature stacks through φ(e) lets us com-

pute new edge attributes that are dependent on the message exchange between nodes (Eq (6)).

Generating FixbbGCN training data

Here we prepare to apply XENet to a specific protein design problem, as described later in the

paper. Our goal is to create a GNN that can analyze a rotamer optimization problem and pre-

dict which rotamers are likely to be sampled in the next round of rotamer substitution and

which can be omitted. We call this trained network “FixbbGCN”.

We used an arbitrary subset of structures from the Top8000 dataset for training [61, 62],

which ensures that each protein structure is adequately refined for our use. Our training set

used 967 structures (total of 229,776 residue positions) and our validation set used 239 struc-

tures (57,584 residue positions). The number of structures we used simply depended on how

much CPU time we were willing to commit for generating data.

We ran 5 repeats of the MonomerDesign2019 variant of Rosetta’s FastDesign [63, 64] pro-

tocol on each structure but only collected training data for the final 4 repeats. We set Rosetta

to generate a larger number of more finely-discretized rotamers by passing the ‘-ex1 -ex2’ com-

mandline flags and used Rosetta’s REF2015 energy function [16]. This accounts for 16 of the

20 rounds of rotamer substitution, though for this project we only use the data from 4 of the

16 rounds due to score function ramping [63]. We therefore ended up with 919,104 training

set elements (229,776 residues x 4 rounds per residue) and 230,336 validation elements.

For this project, rotamers from the 20 amino acids were binned into 54 categories. Alanine

and Glycine each had their own bin due to their lack of meaningful χ1 attributes. Proline was

also only assigned one bin despite having two χ1 rotamer wells [65]. The decision to simplify

Proline’s χ1 binning was driven by the high-risk, low-reward action of eliminating Proline

rotamers from substitution rounds. Proline is valuable for design but is often represented by

relatively few rotamers, so the reward of eliminating Proline is not great. For this reason, we

wanted to let our neural network focus its resources on eliminating the other amino acids.

The remaining 17 canonical amino acids had three bins each, which correspond to the three

χ1 wells.

For each round of rotamer substitution, we tracked the fraction of time that each rotamer

was the representative state for its residue position. At the end of the run, any rotamer bin that

held the representative state for more than 0.1% of the run was classified as a 1. All other rota-

mer bins were classified as a 0. Note that this resulted in a multi-label classification problem

where every sample was associated with one or more classes. We also ignored data from the

fraction of the simulated annealing trajectories where the simulated temperature was above

1,500 K (kBT > 3.0 kcal/mol).

FixbbGCN architecture

We refer to this family of networks as FixbbGCN, as the Rosetta rotamer substitution protocol

is sometimes called “fixbb”. FixbbGCN is schematically represented in Fig 1. The model has
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three input tensors for X, A, and E. The maximum number of nodes per graph representation

is N = 30, the number of attributes per node is F = 46, and the number of attributes per edge is

S = 28. The output of the model is a 54-dimensional vector which holds one value for each of

the rotamer bins described in the “Generating Training Data” section.

For all models, the X and E tensors are first fed to dense layers. These fully-connected layers

only process one node/edge at a time, so that no information flows between nodes or edges.

We then apply one or more steps of message passing, using either XENet, CrystalConv, or

ECC layers. We used the Spektral package’s implementation of the latter two layers. [66].

Fig 1 shows two rounds of message passing but we tested all models with one, two, and

three layers (some XENet models were tested up to five layers, as reported in the SI). We note

that the output tensor E from the final round of XENet is never be used by a future layer. The

subset of parameters used to build this final E will be implicitly omitted when we tally trainable

parameters.

We set FixbbGCN up as a single-node classification problem as opposed to a graph classifi-

cation problem. Thus, after the message-passing stage, we focus on the unique node that

represents the residue of interest being evaluated. We concatenate the output from the final

message-passing layer with the original input X tensor in an effort to compensate the over-

smoothing effect of message passing. We then crop the X tensor to only include the node that

represents the protein residue of interest. FixbbGCN finishes off by running that single node’s

data through two more fully-connected layers.

Fig 1. Schematic representation of FixbbGCNs, the networks used in our experiments. (A) Example layout for a model with two XENet layers. X denotes

node attribute tensor with Xin as the input tensor and Xres as the single-node subset of the X tensor which represents the protein residue of interest. E denotes

the edge attribute tensor with Ein as the input tensor. Dotted lines are used to represent operations that are omitted as described in the main text. (B) Example

layout for a model with two ECC or CrystalConv layers using the same notation. The A tensor is omitted from this diagram because it never changes.

https://doi.org/10.1371/journal.pcbi.1009037.g001
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All dense and message-passing layers have ReLU activation functions except for the final

dense layer which has a sigmoid activation.

Hidden layer sizes. We benchmarked two XENet candidates as outlined in Table 1.

XENet (s) is sized to have the same hidden layer size as the ECC models. XENet (p) is sized to

have the same number of trainable parameters as the ECC models. We tuned these parameters

by changing Fh and Sh, which are the number of channels for the hidden X and E layers,

respectively, before the cropping layer. The penultimate dense layer always has 100 channels

and the final layer always has 54 channels.

Likewise, we benchmarked two CrystalConv models using the same two normalization

techniques and similarly labeled them with (s) and (p). The parameter normalization was not

perfect but we got as close as possible without varying hyperparameters between depths of the

same type.

Each XENet layer always used two internal stacking layers with Sh channels each. In other

words, the φ(s) multi-layer perceptrons always had a depth of two.

Model input. FixbbGCN is intended to evaluate a rotamer substitution problem and

make predictions about how the attempted solution to the problem will unfold. FixbbGCN

does not analyze each rotamer in the set of candidates; instead, it analyzes the current state of

the protein model prior to rotamer substitution. This limits the applicability of FixbbGCN to

be used only with highly-refined protein models where the states before and after rotamer sub-

stitution are expected to be similar. For example, the high-resolution crystal structures used in

our benchmarks are expected to maintain their general side-chain behavior even after under-

going rotamer substitution. A counter-example would be de novo design on a generated back-

bone. FixbbGCN could still be used on that project but would require high-resolution model

refinement beforehand.

Node and edge attributes. Our input data had 46 node attributes and 28 edge attributes,

all of which are listed in S1 Text of the supporting information. Most of these attributes are

direct physical characteristics of residues and physical relationships of residue pairs. We also

included more advanced analytics in the form of Rosetta score terms.

Many of these attributes require access to the PyRosetta package to compute. [67] These

include the Rosetta score terms, hydrogen bond identification, and the residue pair “jump”

Table 1. Hidden layer sizes and number of trainable parameters for all models. Fh is the number of channels for

hidden X layers and Sh is the number of channels for hidden E layers.

Convolution # Layers Parameters Fh Sh

ECC 1 100,067 49 32

ECC 2 181,701 49 32

ECC 3 263,335 49 32

CrystalConv (s) 1 31,271 49 32

CrystalConv (s) 2 44,109 49 32

CrystalConv (s) 3 56,947 49 32

CrystalConv (p) 1 109,283 125 64

CrystalConv (p) 2 188,033 125 64

CrystalConv (p) 3 266,783 125 64

XENet (s) 1 30,421 49 32

XENet (s) 2 47,625 49 32

XENet (s) 3 64,829 49 32

XENet (p) 1 92,928 128 64

XENet (p) 2 179,522 128 64

XENet (p) 3 266,116 128 64

https://doi.org/10.1371/journal.pcbi.1009037.t001
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measurements. A Rosetta “jump” describes the six-dimensional rigid body relationship

between the coordinate frames of two protein residues based on their backbone atoms.

Our model was inconsistent in handling angle values. Backbone torsion angles and trRo-

setta-inspired residue pair angles [68] were represented as single values measured in radians,

whereas side-chain chi angles were split into sine and cosine values. This decision was driven

by the varying levels of confidence in a neural network’s ability to interpret each metric. The

trRosetta-inspired measurements were represented as single radian values in the original

paper [68], which we felt no need to change. In our experience, neural networks do not benefit

from splitting phi/psi angles into sine and cosine, however we do not have deep experience

with modeling chi angles. In short, chi angles were split into sine and cosine for this project

because we do not yet have confidence that neural networks can efficiently interpret them as

single radian values.

MentenGCN package. We have created a public Python package in an effort to make pro-

tein processing with GNNs more portable and easier to share. MentenGCN [69] has a library

of tensor decorators that were used for this project to generate the X, A, and E input tensors

directly from Rosetta’s protein representation. The configuration class for the GNN used in

this paper is available within the MentenGCN package under the name “Maguire_Grat-
tarola_2021”. Please refer to S1 Text of the supporting information for more detail on

how to access this feature.

Training and evaluating FixbbGCN models

Each model configuration was trained between 6 and 12 times, loosely depending on the

amount of resources required to train each model. We show later that the performance of a

given architecture generally has narrow variance so we did not see the need to expand this

sampling.

Each model was trained using Keras’s implementation of the Adam optimizer with a start-

ing learning rate of 0.001 and the binary crossentropy loss function [70, 71]. The learning rate

was reduced by a factor of 10 whenever the validation loss plateaued for 2 consecutive epochs

(min_delta = 0.001). Training was halted whenever the validation loss plateaued for 5

consecutive epochs. We evaluated all models with binary crossentropy and Receiver Operating

Characteristic (ROC) area-under-curve (AUC) on our validation set.

Benchmarking FixbbGCN implementation on classical computer

As we will show in the Results section, the best model observed was XENet (p) with 3 layers.

We benchmarked the applicability of this model by using it alongside Rosetta’s packing proto-

col on six backbones of various sizes. For each backbone, we ran each residue position through

our model and compared the 54 final values against a tuneable cutoff. Rotamers were elimi-

nated if the final value for their respective bin fell below the cutoff. We performed this bench-

mark with a range of cutoffs between 0 and 1. We also included a cutoff of -1.0 as a control

(so that no rotamers were eliminated, since the sigmoid activation has a minimum of 0). The

larger the cutoff, the more aggressively rotamers were eliminated. We ran each cutoff on each

structure 10 times and tracked the final Rosetta score in units of Rosetta Energy Units (REU)

where more negative is better. Although Rosetta was used for benchmarking purposes, the

rational pruning of rotamers offers a benefit to any rotamer optimization method, and could

easily be applied to rotamer optimization problems solved with Toulbar2, Osprey, or other

software as well.

The Protein Data Bank codes for the six backbones used for this benchmark are 1SFX,

1ECO, 1D4O, 1W2C, 1O4S, and 1PJ5 in order of increasing size. All six of these structures are
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also from the top8000 dataset [62] so they are expected to have low homology with the training

and validation data used to train the model. Staying consistent with the training data collec-

tion, Rosetta built rotamers with the “-ex1 -ex2” commandline flags and used Rosetta’s

REF2015 score function [16].

Benchmarking FixbbGCN-XENet implementation on D-Wave advantage

quantum annealer

Rational reduction of rotamer candidates by the FixbbGCN can benefit any mapping of

design algorithms to quantum computers. As a proof of principle, we used the quantum

annealing-based design algorithm called “QPacker”, described in Mulligan et al. [11].

Briefly, the QPacker approach divides the problem into two steps. First, one- and two-body

rotamer energies are pre-computed classically using Rosetta in an O(N2D2) operation for

N sequence positions and D rotamers per position. The quantum annealer is then used to

solve the combinatorial problem, which has an exponentially-scaling O(DN) solution space,

of choosing one rotamer per position so that total energy (the sum of one- and two-body

energies for selected rotamers) is minimized. The QPacker approach assigns one qubit per

rotamer, and permits rapid and efficient sampling from the bitstrings that provide one-hot

encodings of the low-energy rotamer selections. Bitstrings with more than one rotamer

selected per position are prohibited by high energetic penalties. We carried out our bench-

marks using the D-Wave Advantage 5,000-qubit quantum annealer, using the default 20 μs

annealing schedule. Since the qubits of the D-Wave Advantage are incompletely connected,

the 5,000 physical qubits can emulate approximately 124 fully-connected logical qubits.

Since our problems involve more than 124 rotamers, we used the QBSolv hybrid algorithm

[14], which uses an outer classical loop to set up sub-problems which are solved on the

quantum annealer.

As with the classical benchmark, we ran 10 QBSolv attempts (each involving hundreds or

thousands of sub-problems on the quantum annealer) for each FixbbGCN cutoff and reported

the mean and standard deviation across those 10 attempts. During the classical pre-computa-

tion, we also measured Random Access Memory (RAM) usage for each problem size. The

RAM usage is expected to scale quadratically with rotamer count due to the need to calculate

all residue pair energies between neighboring sequence positions. Since FixbbGCN is able to

identify and eliminate nonproductive rotamers prior to the classical energy calculation, this

translates to a saving of time and memory in the classical pre-computation in addition to

fewer qubits needed for the quantum optimization phase.

This quantum benchmark used all of the same Rosetta parameters and FixbbGCN cutoffs

as the classical benchmark. We could not fit the previous test cases on the quantum machine

so we used a subset of the smallest problem (protein data bank code: 1SFX). We used Roset-

ta’s LayerSelector tool to design the 10 residues in the core of the protein [72]. All other resi-

due positions were held immutable, decreasing our maximum rotamer count from 63,183 to

5686.

We found that any problem larger than this one would exceed the resources available to it

for this benchmark. One relevant drawback of this quantum annealer is that all two-body ener-

gies must be exhaustively computed in advance; an O(R2) operation for a problem with R rota-

mers. This is another reason the classical benchmarks were able to test larger cases. Rosetta’s

simulated annealer is able to generate two-body energies on the fly, so the resource usage is lin-

ear with the number of considered substitution loops, which in turn is programmed to be lin-

ear with the number of rotamers.
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Results and discussion

FixbbGCN model comparisons

Our goal for this test was to find the graph convolution that would best represent our protein

modeling data. XENet is our attempt to engineer a new GNN layer that makes further use of

the edge tensors, including updating their features as the result of the convolution. As baseline

model for this experiment we considered ECC, since it is one of the first and most widely used

GNNs designed to process edge attributes, and we compare it against different configurations

of CrystalConv and XENet to ensure a fair comparison. XENet (s) and CrystalConv (s) are

normalized by the channel depth of each hidden layer. XENet (p) and CrystalConv (p) are nor-

malized by the trainable parameter count.

The models were tasked with a multi-label classification problem to predict which protein

side-chain rotamers would be sampled at a given sequence position during a round of Rosetta’s

rotamer subsitution protocol with simulated annealing and which could be omitted. [17] We

see in Table 2 that the XENet models outperform their ECC and CrystalConv counterparts,

although some of the CrystalConv models are in close competition with the best XENet mod-

els. In addition to having better loss and AUC scores, XENet convolutions appear to perform

better with deeper architectures. XENet slightly improves when the third graph convolution

layer is introduced, whereas ECC and CrystalConv exhibit a consistent drop in performance at

that depth.

The reasons for these differences in performance can be readily motivated by considering

the differences between the models themselves. First, ECC’s FGN is an indirect way of process-

ing edge attributes and requires a strong supervision signal in order to be trained effectively,

which may not be easy to attain especially within deeper architectures. Second, ECC was often

shown to be most effective when processing data with one-hot encoded attributes [52, 53],

which is not the case here.

Since CrystalConv does not use a FGN to process the edges, it does not have the same

problems as ECC and its performance is more in line with XENet’s. However, the asymmetric

processing of XENet, paired with its ability to update edge attributes to obtain a richer

Table 2. Training results. Mean binary crossentropy loss and mean AUC for trained models. σ denotes standard deviation. Lower loss values are considered better

whereas higher AUC values are better.

Convolution # Layers Loss σ Loss AUC σ AUC # Models

ECC 1 0.188 0.004 0.9772 0.0009 8

ECC 2 0.213 0.071 0.9674 0.0224 6

ECC 3 5.442 0.462 0.6248 0.0284 6

CrystalConv (s) 1 0.173 0.001 0.9807 0.0003 8

CrystalConv (s) 2 0.155 0.002 0.9844 0.0003 8

CrystalConv (s) 3 4.520 0.258 0.6872 0.0179 8

CrystalConv (p) 1 0.158 0.002 0.9837 0.0005 8

CrystalConv (p) 2 0.145 0.002 0.9865 0.0004 8

CrystalConv (p) 3 5.522 0.345 0.6238 0.0368 8

XENet (s) 1 0.155 0.001 0.9844 0.0003 10

XENet (s) 2 0.147 0.002 0.9860 0.0005 8

XENet (s) 3 0.143 0.001 0.9868 0.0002 8

XENet (p) 1 0.143 0.001 0.9869 0.0002 10

XENet (p) 2 0.137 0.002 0.9878 0.0004 12

XENet (p) 3 0.134 0.002 0.9883 0.0004 8

https://doi.org/10.1371/journal.pcbi.1009037.t002
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representation, make it more suitable for this particular type of data and results in a better

overall performance in all configurations.

We show in Fig 2 that XENet can even handle depths of 4 and 5 GNN layers. The additional

layers did not give us an advantage in validation loss; however, deeper architectures will theo-

retically be more advantageous for use cases that require more expansive message passing than

our benchmark. For this reason, the mere ability to handle deeper architectures may prove to

be a strength of XENet. XENet did encounter occasional failures with the deeper architectures

but the majority of deeper models finished with competitive validation losses. We did not

test CrystalConv or ECC with architectures of 4 or 5 layers due to their lack of success with 3

layers.

Quantum FixbbGCN benchmark

With trained models in hand, we wanted to see how much they can decrease the classical and

quantum resource costs for our quantum annealing use cases. We wrapped the best model for

each architecture in Rosetta rotamer-elimination machinery and named it FixbbGCN (“fixbb”

is a popular name for Rosetta’s fixed-backbone packing protocol).

We cannot run full-sized quantum benchmarks for the same reason that this project was

motivated: our protein design benchmarks are too large to be run on the quantum computers.

The best we can currently do is use FixbbGCN to design a subset of the protein on the quan-

tum annealer and save the larger problems for the classical benchmark presented later in the

article.

For this test, we needed a very small problem size. We took the smallest test case from our

benchmark set but restricted sampling to only include the core of the protein. We used Roset-

ta’s definition of the core of the protein, which identified 10 residue positions that were suffi-

ciently isolated from solvent exposure.

We chose this benchmark because the core is the most combinatorially challenging part of

the protein to design. Rosetta samples core rotamers more finely than solvent-exposed residues

so the rotamer count per position is higher. Additionally, these residue positions tend to have

more neighbors, resulting in a more complex energy optimization problem.

XENet shows in Fig 3 an ability to decrease the rotamer count to roughly 60% before the

dip in Rosetta score appears. ECC drops in quality near 70% and CrystalConv drops near 64%.

We did not report runtime for this benchmark because we had no way to decouple time

spent running the annealer from time spent sending our data over the internet and waiting in

the quantum computer’s queue. However, we expect that setup time will correlate linearly with

RAM usage as both have quadratic relationships with the rotamer count. Quantum annealing

time itself is currently limited by the coherence time of the D-Wave’s superconducting qubits,

but represents a small minority of the total computing time. However, the benefit for qubit

usage can be quantified: given the QPacker algorithm, which uses ND logical qubits to repre-

sent a problem with N variable amino acid positions and D rotamers per position, the fold

reduction in rotamer count is equal to the fold reduction in the number of logical qubits

needed (i.e. if FixbbGCN is used to reduce the number of rotamers by 40%, it reduces the

number of logical qubits by 40% as well).

Using RAM as our guide, XENet is able to reduce our problem’s memory consumption to

32% before the decrease in design quality appears. The CrystalConv model came close with a

decrease to 36% memory consumption and the ECC only model shrank the problem to 43%

memory consumption.

Finally the reduction in the size of the solution space can also be quantified. Given that

there are DN possible solutions to a packing problem of N positions and D rotamers per
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Fig 2. Depth comparison with fixed parameter count. We plot the losses of all trained ECC, CrystalConv (p), and

XENet (p) models against the number of graph convolutional layers in each model. Transparency was applied to the

points to help illustrate density. ECC and CrystalConv have no points with 4 or 5 layers.

https://doi.org/10.1371/journal.pcbi.1009037.g002
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position, a 40% reduction in the number of rotamers per position means that the total problem

space is reduced to 0.6N of what it was. In the case of this quantum benchmark, with N = 10

positions, the FixbbGCN network could scale the solution space by a factor of 0.006 (i.e. to

about 1/165th its original size). Although this translates to a linear decrease in quantum

resource usage, for classical algorithms this represents a massive reduction in the amount of

Fig 3. Quantum FixbbGCN benchmark results. (A) Mean Rosetta Scores for various cutoffs and convolutions types.

Lines connect points of the same convolution and the line to the first drop in design quality is drawn thick. X-axis

values are the number of surviving rotamers for a cutoff/convolution pair divided by the number of rotamers in the

control case. (B) Same results as (A) but plotting against annealer memory usage instead of rotamer count. Both y-axes

are truncated for the sake of readability.

https://doi.org/10.1371/journal.pcbi.1009037.g003
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solution space that must be searched and the amount of computing power needed to find the

global optimum, as discussed in the next section.

Classical FixbbGCN-XENet benchmark

The goal for the final benchmark was to assess to what extent XENet’s pattern observed in the

quantum benchmark persists for full-sized use cases. Unfortunately, these full-sized design

cases are too large for us to run on quantum computers so we ran these benchmarks using

Rosetta’s simulated annealer. This is the best we can do with current technology but hopefully

a more complete test will be possible someday.

Similar to the quantum benchmark, this benchmark applies the XENet classifier with vari-

ous cutoffs to Rosetta’s set of rotamers for six different protein design problems. This time,

however, the entire protein structures are being designed. Rotamers are pruned if their pre-

dicted value from the classifier is below the cutoff. The “control” data point with the largest

rotamer count for a given use case is the standard Rosetta packing protocol with no influence

from the classifier.

We see in Fig 4 that we can use FixbbGCN to decrease the number of rotamers without a

loss in design quality to a limited extent. The Rosetta score will generally stay in range of the

control data down to the range of 55–60% of the original rotamer count.

Fig 4 illustrates how larger problems generally behave more predictably than smaller prob-

lems. For the control (x-axis value = 1.0), the magnitude of the error is roughly 0.6% for the

smallest problem and roughly 0.2% for the largest problem. Additionally, the impact of

FixbbGCN appears to follow a more predictable pattern for larger sizes. One interpretation of

this increasing predictability is that the larger proteins have more buried positions (unexposed

Fig 4. FixbbGCN benchmark results. Results of running Rosetta’s rotamer substitution protocol on six different protein backbones. FixbbGCN was used

with various cutoffs to decrease the total rotamer count of each sample. The mean Rosetta scores (measured in REU) and standard deviations are displayed

for each cutoff. The y-axes are truncated for the sake of readability. Protein data bank codes from left to right are (top row) 1SFX, 1ECO, 1D4O and

(bottom row) 1W2C, 1O4S, 1PJ5.

https://doi.org/10.1371/journal.pcbi.1009037.g004
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to solvent). Buried positions are traditionally considered to be challenging to sample due to

their inherently large number of neighbors. While this higher difficulty may exist, there may

also be a higher degree of sampling predictability due to the confined local conformation of

the buried pocket. We do not have enough evidence to do more than speculate at this time;

future research would be required to dive into the intricacies of the rotamer substitution

behavior.

The results in Fig 4 supports the idea that FixbbGCN’s ability to eliminate rotamers for

small problem sizes translates to larger problem sizes too. It is up to the user to decide how

risky they want to be with FixbbGCN, but our results suggests that decreasing rotamer counts

to roughly 60% is safe. As discussed in the previous section, for a problem with N variable posi-

tions, this represents a shrinkage of the size of the solution space by a factor of 0.6N, exponen-

tially decreasing the necessary length of trajectories searching the solution space to find low-

energy solutions. For the examples shown in Fig 4, N ranges from 102 to 827 sequence posi-

tions, meaning that FixbbGCN was able to reduce the size of the solution space by a factor of

4.3x1023 to 2.9x10183, massively improving the probability of finding low-energy states in a

finite-length Monte Carlo trajectory.

Conclusion

Graph neural networks have great potential for modeling residue-level protein interactions.

We show that our new convolution, XENet, can model residue-level environments better than

existing methods ECC and CrystalConv. Not only does the usage of XENet result in lower vali-

dation losses, but we show that XENet can withstand deeper architectures.

To demonstrate XENet’s value, we have used it to create a tool (FixbbGCN) capable of fit-

ting larger protein design problems onto quantum computers by eliminating side-chain

conformations that are unlikely to be selected by a rotamer optimization algorithm. XENet

was consistently able to reduce rotamer counts by 40% without loss in design quality. As a

result, we measured a 68% decrease in total problem memory consumption, which has a

quadratic relationship with rotamer count. Most importantly, we were able to achieve a

massive reduction in the size of the solution space, from 2 orders of magnitude for a small

problem with 10 variable positions to 183 orders of magnitude for a large problem with 827

variable positions. This ability to shrink the solution space exponentially reduces qubit con-

sumption linearly on quantum computing hardware, making it feasible to solve more diffi-

cult protein design problems on more modest, nearer-term quantum computers, and

facilitating future research to determine the ultimate utility of quantum computers to

protein design. The exponential reduction in the size of the solution space also results in

an exponential reduction in the number of solutions that must be searched using classical

heuristic methods such as those implemented in Rosetta in order to find near-optimal solu-

tions, as well as in the computing power needed to find the global optimum using exact solv-

ers like those implemented in Toulbar2 or Osprey. More broadly, we anticipate that the

XENet convolutional architecture will be widely applicable to many problems in protein

modeling.
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