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ABSTRACT Accurate modeling of protein-water interactions in molecular dynamics (MD) simulations is important for under-
standing the molecular basis of protein function. Data from x-ray crystallography can be useful in assessing the accuracy of MD
simulations, in particular, the locations of crystallographic water sites (CWS) coordinated by the protein. Such a comparison re-
quires special methodological considerations that take into account the dynamic nature of proteins. However, existing methods
for analyzing CWS in MD simulations rely on global alignment of the protein onto the crystal structure, which introduces substan-
tial errors in the case of significant structural deviations. Here, we propose a method called local alignment for water sites
(LAWS), which is based on multilateration—an algorithm widely used in GPS tracking. LAWS considers the contacts formed
by CWS and protein atoms in the crystal structure and uses these interaction distances to track CWS in a simulation. We apply
our method to simulations of a protein crystal and to simulations of the same protein in solution. Compared with existing
methods, LAWS defines CWS characterized by more prominent water density peaks and a less-perturbed protein environment.
In the crystal, we find that all high-confidence crystallographic waters are preserved. Using LAWS, we demonstrate the impor-
tance of crystal packing for the stability of CWS in the unit cell. Simulations of the protein in solution and in the crystal share a
common set of preserved CWS that are located in pockets and coordinated by residues of the same domain, which suggests that
the LAWS algorithm will also be useful in studying ordered waters and water networks in general.
SIGNIFICANCE Protein-water interactions are fundamental to protein function. X-ray crystallography provides a high-
resolution protein structure and positions of well-ordered water molecules that can be compared with time-resolved MD
simulations. However, methods accounting for protein flexibility are needed to carry out a rigorous comparison between
simulation and experiment. With these considerations, we developed an approach that tracks water sites relative to the
local protein motion and determines if crystallographic waters are preserved in a simulation based on the local density of
water. The LAWS algorithm is general and can be extended to tracking any arbitrary location in a simulation relative to
reference points. Our approach could be applied to studying ordered water networks, which are important in the function of
many proteins.
INTRODUCTION

Water is an essential component of biomolecular systems; it
affects the structure and stability of biological machinery
through the hydrophobic effect, hydrogen bonding, and po-
lar interactions (1). Protein-water interactions are important
driving forces in dynamic processes, such as protein folding,
self-assembly, and binding (2,3). In addition, solvation is
essential for protein function, since water networks have
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been shown to play a crucial role in the motion of protein
domains (1,4–6). All-atom molecular dynamics (MD) simu-
lations can provide information on the molecular basis for
protein function, but require high-resolution structural infor-
mation (1,7).

X-ray crystallography is the most commonly used exper-
imental technique to obtain high-resolution protein struc-
tures found in the Protein Data Bank (PDB) (8). Crystal
structures often contain crystallographic water sites
(CWS), which are locations of high water density in the lat-
tice. These CWS represent ordered water molecules, which
are stabilized by noncovalent interactions with the protein,
while bulk (unordered) water molecules comprise the re-
maining space between the protein chains. Past studies
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have used the preservation of CWS as a means to assess
the accuracy of protein-water interactions in simulations
(9–13). MD simulations can probe the dynamics of protein
crystals because periodic boundary conditions mimic the
periodic nature of crystal lattices (14–16). An accurate
modeling of protein-water interactions implies that the pro-
tein structure along with the crystallographic waters should
be well preserved in MD simulations of crystals. Since x-ray
crystallography provides an ensemble-averaged conforma-
tion of the protein and CWS, a direct comparison between
time-resolved MD trajectories and experiment requires spe-
cial methodological considerations.

The analysis of CWS in MD simulations has been
carried out using a variety of methods that can be broadly
classified into two categories—density-based and coordi-
nate-based methods (Fig. 1). In density-based methods
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(9,10,12,13,17–20), the time-averaged atomic density of
the solvent molecules is computed, where high-density
peaks correspond to CWS and are compared with the exper-
imental CWS positions (Fig. 1, A and C). In contrast, the co-
ordinate-based methods (11,13,18,21,22) analyze the
explicit positions of the water molecules in each MD frame
in the vicinity of CWS (Fig. 1, B and D). To identify if CWS
are preserved in simulations, their locations are probed for
the presence of water molecules. We refer to these locations
in the MD trajectory as water sites (WS); they can be
tracked in various ways depending on whether the protein
conformation is globally or locally aligned to the crystal
structure. When using global alignment (Fig. 1, A and B),
the entire protein is superimposed onto the crystal structure
and the experimental positions of the CWS represent the
WS in a frame. In the local alignment approach, WS are
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defined using only a local region of the protein in the vicin-
ity of the experimental CWS (Fig. 1 D).

In the analysis of CWS, a quantity of interest is the pro-
portion of CWS preserved in a simulation, referred to as
recall statistics (9–13,23). It has been demonstrated that
density-based and coordinate-based methods produce com-
parable recall of CWS when global alignment is employed
(13). However, the global alignment approach has one
notable limitation; it is only suitable for analysis of MD sim-
ulations in which the protein does not deviate significantly
from the crystal structure. Previous simulations were typi-
cally either short (tens of ns) or restrained (9–13). For
example, Wall et al. showed that 93% of all CWS were
preserved within 1.4 Å of their experimental positions in
a simulation with position restraints, while only 46% of
CWS were preserved when position restraints were
removed, suggesting that the deviation of a protein from
its crystal structure may contribute to the loss of CWS in
simulations (12). It has been observed in simulations and ex-
periments that, even in a crystal environment, proteins are
flexible and can undergo conformational changes at sub-
ms timescales (24–26). The dynamic nature of proteins mo-
tivates the local alignment approach.

To characterize the water structure in simulations to pre-
dict potential CWS, Henchman and McCammon developed
a local alignment approach using backbone atoms (18).
However, side-chain atoms also contribute to the coordina-
tion of crystallographic waters. Caldararu et al. proposed a
method that includes local side-chain atoms in the align-
ment to track WS. Their method relies on clustering coordi-
nates of the water molecules located near WS (13).
However, clustering algorithms have their limitations as
they are data driven and can be sensitive to the choice of pa-
rameters (27). A natural way to analyze CWS in MD simu-
lations is by using a measure of density, as these data are
probed in x-ray crystallography experiments.

Here, we propose a method called local alignment for wa-
ter sites (LAWS) to assess the preservation of experimen-
tally refined crystallographic waters in MD simulations.
LAWS is based on a widely used algorithm in GPS naviga-
tion called multilateration (28) to track WS relative to
nearby protein atoms in an MD trajectory. Instead of relying
on absolute coordinates of CWS in the crystal structure,
which is what conventional global alignment approaches
do, LAWS defines WS at specified distances from nearby
protein residues. The LAWS algorithm makes it possible
to optimally compute such positions in space that would
correspond to the positions seen in the crystal structure.
First, we apply LAWS and the conventional global align-
ment approach to an MD simulation of a protein unit cell.
We demonstrate that our approach characterizes CWS
with a higher density of water compared with global align-
ment by reducing alignment errors. We also explore how
various properties of the CWS, such as the experimental un-
certainty (B-factors) and the location relative to the protein,
affect the recall of CWS in the simulation. Finally, by
analyzing the simulations of the same protein in solution,
we discuss the contribution of interchain crystal contacts
to the stability of CWS.
METHODS

The LAWS algorithm

In a crystal structure, each CWS can be characterized by a set of contacts

with nearby protein atoms, referred to as ‘‘coordination.’’ When similar in-

teractions are maintained in a simulation, the position of the crystal water

would be preserved over time. Therefore, with the LAWS algorithm, we

track WS (corresponding to CWS in a crystal structure) in a simulation us-

ing these reference interaction distances and compute the density of water

molecules around each WS (yellow spheres in Fig. 2 A).

Tracking WS in a simulation using LAWS

The first step is to find the atoms that coordinate each CWS in the crystal

structure. We use the atomic coordinates from the crystal structure to deter-

mine a set of n protein atoms, Ai, with indices i ¼ 1;.;n, as well as the

distances, bdi , between the CWS and these protein atoms Ai (dashed lines in

the central panel of Fig. 1).

Now, knowing the coordination of each CWS, we can track the corre-

sponding WS in each simulation frame. Let x; y, and z be the unknown

coordinates of a WS in a simulation frame. The set of known distancesbdi to the nearby protein atoms can be used to find the unknown coordi-

nates of the WS even when the protein atoms Ai change position

xi; yi; zi throughout the trajectory. In other words, for every frame, we

are aiming to find the position x; y; z of the WS that satisfies the n distance

equations:

bdi ¼ �ðx � xiÞ2 þ ðy � yiÞ2 þ ðz � ziÞ2
�1
2

ði ¼ 1; 2;.; nÞ:
(1)

This problem is formulated in the literature as multilateration (28), which

is commonly encountered in navigation and surveillance. For example, a

GPS device calculates distances bdi by measuring the times required for a

signal to travel from a set of satellites. Since the position of each satellite

xi; yi; zi is known at any given time, the coordinates of the GPS device

x; y; z can be determined by solving a system of Eq. (1). By analogy, the

reference protein atoms act as the satellites and the GPS device represents

a water site with a location that needs to be determined.

The system of nonlinear equations (1) has three unknowns and n equa-

tions. In theory, the exact solution of the equation can be found uniquely

if n ¼ 4 positions and distances are provided—analogous to identifying

the point of intersection of four spheres with known radii and positions

of the centers in 3D space. However, an ambiguity of the solution is

possible when any two sphere centers and the unknown point are collinear.

In that case, more spheres are required for a unique solution. On the other

hand, Eq. 1 is not guaranteed to have a solution as the spheres may not inter-

sect in every case. Thus, due to the stochastic nature of protein motions and

the fact that it is not possible to find an exact solution in every instance, an

optimal solution is required instead.

We define the LAWS error as the weighted sum of squares:

LAWS ðx; y; zÞ ¼
Xn

i ¼ 1

w2
i

��ðx � xiÞ2 þ ðy � yiÞ2

þðz � ziÞ2
�1
2 � bdi

�2

; (2)
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FIGURE 2 The LAWS pipeline. (A) A cartoon

representation of one MD frame containing posi-

tions of protein and water molecules, overlapping

with a crystal structure in gray. Yellow points repre-

sent WS that are tracked by the LAWS algorithm

based on the distances bdi (obtained from the crystal

structure) to reference protein atoms. Note that

contacts can be formed by multiple protein chains.

To check if a CWS is preserved in MD, we analyze

how often the corresponding WS is occupied by

water molecules. Bulk WS (shown in gray) are

used as a control. To find the occupancy for each

WS, we compute the vector r! and distance

r ¼ j r!j to the nearest water molecule at each

frame and estimate the distribution PðrÞ and the

corresponding radial distribution function gðrÞ. De-
pending on PðrÞ and gðrÞ, each WS can be classi-

fied into three groups. (B) An example of the

distance distribution PðrÞ for a preserved WS,

bulk WS, and obstructed WS, shown in (A). (C)

The corresponding radial distribution functions

gðrÞ ¼ PðrÞ=r2. A radial density around a pre-

served WS has a peak close to zero. For a bulk

WS the radial density must be uniform from zero to dOO=2 (shown as a dashed line), where dOO is the average distance between nearest neighbor oxygen

atoms in bulk water. An obstructed WS has a radial density peak at r > dOO=2. To see this figure in color, go online.

Klyshko et al.
where wi are the weights of each atom Ai coordinating the water site, such

that
Pn

i¼ 1w
2
i ¼ 1. This function is then minimized to find the optimum

position x�; y�; z� of the water site in a given simulation frame:

x�; y�; z� ¼ argmin
x;y;z

LAWSðx; y; zÞ: (3)

This procedure is the weighted least-squares problem for which we used

a Python implementation of the Levenberg-Marquardt algorithm (29).

The motivation for using weights comes from the susceptibility of the

least-squares method to outliers. Protein atoms closer to the CWS in the

crystal have a higher contribution to the interaction energy than atoms

further away. Hence, they have greater weights in the LAWS error

(Eq. 2), which increases the robustness of the algorithm. Importantly, the

value of the LAWS error at the optimum x�; y�; z� shows a quantitative es-
timate of how much the local protein region is perturbed relative to the crys-

tal structure. The exact solution will have a LAWS error of zero. Therefore,

the LAWS error is a measure of the displacement of the WS from its ideal

position observed in the crystal structure.

The application of this tracking algorithm can be extended beyond the

scope of the current work, namely, tracking crystallographic water in sim-

ulations. It can be generalized to tracking various types of molecules rela-

tive to an arbitrary reference. When applied to a small molecule with a

single functionally important atom or an ion, the approach is analogous

to the one described here. The reference distances can be extracted from

a crystal structure. However, applying LAWS to track larger molecules,

such as a lipid, polyethylene glycol, or a molecule with multiple functional

groups, requires additional considerations. When more than one atom is be-

ing tracked, the LAWS function (Eq. 2) will have additional terms corre-

sponding to each atom, as well as distance constraints. The optimization

problem will resolve multiple positions: (x1;y1; z1), (x2; y2; z2), and so on.

Parameters

When applying the LAWS algorithm to an MD trajectory, the number of

protein atoms, n, coordinating the CWS and the weights of each atom,

wi, must be determined. These parameters are computed only once, at

the start of the algorithm, and are based on the positions in the crystal

structure.
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There is a trade-off between computational efficiency and robustness of

the numerical algorithm that depends on the number of protein atoms, n,

used to coordinate each CWS. A larger n increases the computational

cost of solving Eq. 3, while a smaller n makes the algorithm less robust

to outliers. The value of n depends on the cutoff distance defining a contact.

We use a cutoff distance of 4.5 Å for heavy protein atoms and set a

maximum of n ¼ 10. If there are fewer than four protein atoms in contact

with the CWS, we increase the cutoff distance until we find at least n ¼ 4.

Therefore, n varies between 4 and 10 depending on the CWS. Importantly,

we take into consideration protein atoms from multiple symmetrically

related molecules if the CWS is located at the interface between molecules

in the unit cell (Fig. 2 A). We also tested the LAWS algorithm with the same

fixed number of heavy atoms n for all CWS in a range from 5 to 8 and the

results were not significantly affected by this parameter choice. Once n

reference protein atoms are determined, the distances bdi can be computed

and used in Eq. 2.

The choice of weights wi in Eq. 2 is motivated as follows: the protein

atoms located closer to the WS contribute more to its coordination. The pro-

tein-water interaction energy depends on the distance, r, between atoms,

where aR 1 for various noncovalent interactions. We chose the weights

wi to be proportional to the interaction energy and hence inversely

proportional to the distance between the CWS and a protein atom in the

crystal structure (f1=bdi , i.e., a ¼ 1). We tested other values of a

ða ¼ 2;.; 6Þ and this did not affect the results significantly. The normal-

ized weights are therefore given by:

w2
i ¼ ð1=bdiÞ2Pn

i ¼ 1ð1=bdiÞ2: (4)

Computing density profiles of WS

To estimate how frequently a water molecule occupies any given WS, we

compute the offset vector~r and the distance r from a WS to the oxygen

of the nearest water molecule at each frame. The distance distribution

PðrÞ (averaged over all symmetrically related copies) then provides a mea-

sure of the occupancy of the WS in the trajectory, as it shows the fraction of

nearest neighbor water molecules found in the spherical shell with radius r



LAWS: Local alignment for water sites
from the WS (Fig. 2 B). Since the probability to find water in a spherical

shell with radius r is proportional to the area of a sphere, PðrÞf 4pr2,
we normalize the distribution PðrÞ by r2 to define a radial distribution func-
tion (RDF). Then, gðrÞ ¼ PðrÞ=r2 provides a density profile as a function

of the distance r from the WS (Fig. 2 C). As an alternative approach, offset

vectors~r around each WS can be used to generate local 3D density maps

with, for example, GROmars software (30). The details of this approach

are presented in supporting material (Section S7).

Bulk WS as control

A CWS that is preserved in a simulation is expected to have on average a

higher occupancy than a WS in a bulk water region, which can be treated

as a reference for comparison (31). Bulk WS are defined as positions within

the unit cell where water molecules are not significantly influenced by the

interaction with the protein. Water was experimentally observed to have

bulk-like properties (in terms of the lifetime of hydrogen bonds) at least

6 Å from the protein surface (32). Based on this observation, we checked

if randomly sampled positions in a unit cell located at least 6 Å from the

protein (gray spheres in Fig. 2 A) would display bulk water properties.

We ran a 500 ns simulation of a box of water to model ideal bulk water

behavior (Section S1). Analyzing the PðrÞ distribution for randomly

sampled locations in the box, we found that the bulk water PðrÞ was statis-
tically identical to the PðrÞ sampled at 6 Å from the protein in our MD

simulation of a unit cell (Fig. S1). Therefore, water molecules located

>6 Å from the protein surface exhibit bulk behavior, and hence the PðrÞ
(and corresponding gðrÞ) from the unit cell simulation can be used as the

control bulk distribution.

The radial density around a bulk WS should be uniform from zero to

dOO=2 (Fig. 2 C), where dOO is the average interoxygen distance between

nearest neighbor water molecules in liquid water. Hence, it is equally likely

to find the nearest neighbor water molecule at any distance r% dOO= 2

from a bulk WS. When r > dOO=2, the probability to observe a nearest

neighbor water becomes negligible as r approaches dOO. The experimental

estimate of dOO was reported to be in the range of 2.7–3.0 Å (33,34). We

estimated a value of dOO ¼ 2:8 Å using the gðrÞ from our simulations,

consistent with previous MD studies (10,12).

Preserved, bulk-like, and obstructed WS in a simulation

Once the bulk control is established, a comparison can be made between

PðrÞ of each WS with the control bulk distribution (Fig. 2 B). There are

three possible outcomes of this comparison. 1) If a WS is preserved in a

simulation, the waters are distributed more closely to the WS, and

the PðrÞ is expected to be more left-shifted relative to the control (Fig. 2

B, blue). 2) Conversely, if the nearest waters are distributed away from

the WS, PðrÞ would be right-shifted and considered to be obstructed

(Fig. 2 B, red). Obstructed WS occur when the protein or another cosolute

occupies this space, obstructing access of water molecules. 3) Finally,

if PðrÞ is similar to the bulk water control, this WS would be

considered bulk-like (Fig. 2 B, gray). Both obstructed and bulk-like WS

correspond to CWS in the crystal structure that are not preserved (i.e.,

lost) in a simulation.

Here, we classify WS as preserved, bulk-like, or obstructed, using the

RDF gðrÞ ¼ PðrÞ=r2. The radial density profile for a preserved WS is ex-

pected to have a higher peak, the radial density for a bulk-likeWS should be

uniform, while the radial density of an obstructed WS is less than the bulk

control (Fig. 2 C). The metric we used to compare the RDF with the bulk

control is the integral
R dOO=2
0

gðrÞdr of the RDF in the interval from 0 to

dOO=2. First, we computed this integral for randomly sampled bulk WS

to estimate a range (IMIN , IMAX) for comparison. For our system, we sampled

120 different bulk water locations and found that the range of the gðrÞ in-
tegrals was between IMIN ¼ 0:47�A� 2 and IMAX ¼ 0:63�A� 2. For a pre-

served WS, the RDF integral is greater than IMAX (Fig. 2 C, blue), for a

bulk-like WS the value of the integral is in the range from IMIN to IMAX

(Fig. 2 C, gray), while an integral below IMIN indicates an obstructed WS

(Fig. 2 C, red).
The local density criteria are also applicable to the CWS that are repre-

sented by alternative conformations with partial occupancy in the crystal

structure. From the experimental perspective, even an alternative conforma-

tion is represented by an electron density peak above the average bulk water

density. This implies that a difference between the preserved WS and the

bulk water should be distinguished by our density criteria.
Global alignment versus LAWS comparison

We compared global alignment and LAWS as two approaches for tracking

WS in a simulation. In global alignment, for each frame of the trajectory,

the protein structure was aligned to the crystal structure by minimizing

root-mean-squared deviation (RMSD) using the MDAnalysis Python li-

brary (35). In this case, the positions of aligned crystallographic water ox-

ygen atoms defined the WS. Once the WS are defined at each simulation

frame (using either global alignment or LAWS), we can compute the pres-

ervation of these sites using the RDF approach described above.

Globally alignedWS positions are fixed relative to each other, whereas in

LAWS they can move relative to each other due to changes in the protein

structure. The reference points and distances used in LAWS are computed

once, at the start, using only the experimental crystal structure, not a starting

structure or any structure from the simulation. The same crystal structure is

used for global alignment (aligning to this crystal structure at every frame).

Therefore, LAWS does not have a bias or intrinsic advantage relative to

global alignment since both approaches are supplied with the exact same

information, namely the atomic positions in the experimental structure.

While LAWS uses this information to extract distances (and hence,

weights) to define WS in a trajectory, global alignment uses this informa-

tion to carry out an RMSD superposition. Since the methods use exactly

the same input information, a comparison of the two methods is fair. We

note that, if there is no observed deviation from the crystal structure in a

simulation (RMSD is negligible), then the results of global alignment and

LAWS would be equivalent.
MD simulation details

Model building

The simulation system was constructed from the 95-residue-long second

PDZ domain of the ligand of Numb protein X 2 (LNX2PDZ2), which

was obtained from PDB: 5E11 (24) with a resolution of 1.80 Å (Fig. 3).

We chose this structure as an example of a room temperature protein crys-

tal structure. Alternate conformations with the highest occupancy were

chosen in model building. We used the CHARMM-GUI web-server to

add atoms that were missing in the crystal structure (36). The positions

of all hydrogen atoms in the original PDB file were ignored. Instead,

hydrogen atoms were added to the initial structure using pdb2gmx in

the GROMACS software package (37). Next, CHARMM-GUI (36) was

used to reconstruct a triclinic unit cell (C121 space group, with parameters

a ¼ 65:30 Å, b ¼ 39:45 Å, c ¼ 39:01 Å, and a ¼ g ¼ 90�, b ¼
117:54�) with four symmetrically related proteins (Fig. 3). Since the con-

ditions (salt concentration, pH, etc.) of the protein crystal are difficult to

determine, these parameters were chosen to match the conditions of the

crystallization buffer as closely as possible. Sodium chloride (NaCl) was

added to neutralize the system and then to mimic the 35 mM concentration

of NaH2PO4 found in the buffer. To mimic the pH of the crystallization

buffer (pH 4.5), the residues were matched to their protonation states at

this pH: N- and C-termini were kept charged and all of the histidine res-

idues were protonated (24). All of the crystallographic water oxygen

atoms (with the highest occupancy in case of alternate conformations)

were included in the construction of the unit cell. Following the method

of Cerutti and Case (15), additional water molecules were added to solvate

the system and preserve the experimental volume of the unit cell in the

NPT ensemble using the GROMACS utility solvate (37). The simulation
Biophysical Journal 122, 2871–2883, July 25, 2023 2875



FIGURE 3 The simulation system. A single unit cell of the LNX2PDZ2

crystal with the ac-plane shown. There are 94 CWS (yellow spheres) around

each of four symmetrically related protein chains (colored individually and

shown in a surface representation). There are 376 CWS in total. To see this

figure in color, go online.
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system contained a total of 9650 atoms, with 6892 protein atoms, and

3750 water atoms, as well as 6 sodium ions and 2 chloride ions. To

construct the system for simulating a protein in solution, a single PDZ

domain was placed in a dodecahedral box. The same conditions (salt con-

centration, pH) were used as for the unit cell system. As a result, this sys-

tem contained a total of 37,329 atoms, with 1723 protein atoms and

35,589 water atoms, as well as 9 sodium ions and 8 chloride ions.

CWS

In the crystal structure (PDB: 5E11), there are a total of 94 water oxygen

atoms, of which 88 have occupancies of 100%, while 6 have alternative

conformations with partial occupancies. For our analysis, we consider

94 CWS represented by the positions of these oxygen atoms, using the

alternative conformation with the highest occupancy. Thus, we tracked

94 WS associated with each of the four individual PDZ domains in the

unit cell, such that there are four symmetric copies of each CWS,

providing a total of 94� 4 ¼ 376 WS for the entire unit cell (Fig. 3).

A CWS was classified as intrachain if its coordination was limited to a sin-

gle protein chain, whereas it was classified as interchain if it was coordi-

nated by multiple distinct chains of the unit cell. Of the 94 CWS

associated with each PDZ domain, 38 were found to be intrachain and

56 were found to be interchain.

Simulation

Simulations were carried out using GROMACS 2019.1 (37). The

CHARMM36m force field (38) combined with the CHARMM-modified

TIP3P water model (39) were used for the study. The time step of the simu-

lation was 2 fs. The LINCS algorithm was used to constrain covalent bonds

with hydrogen atoms (40). Short-range electrostatics and Lennard-Jones in-

teractions were computed with a cutoff of 9.5 Å. Long-range electrostatics

were computed using particle-mesh Ewald summation with a grid spacing

of 1.2 Å with a fourth order interpolation (41). A compressibility of 2:5�
10� 5 bar�1 was used to mimic the compressibility of a protein crystal

(42). The temperature of the simulation was kept constant at 298 K using

the velocity rescaling thermostat (43) to match the experimental conditions.

The pressure of the system was kept constant at 1 bar. Following energy

minimization of the system using the steepest descent algorithm, 10 ns of

position restrained simulation was performed, followed by equilibration

in the NVT ensemble for 100 ns. Two types of NPT equilibration simula-

tions were performed in succession: 1) 10 ns of isotropic Berendsen pres-
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sure coupling to quickly reach a pressure of 1 bar and 2) 100 ns of

simulation using isotropic Parrinello-Rahman pressure coupling (44,45).

The simulation was extended for an additional 1 ms, which was used for

the analysis (100,000 frames with a 10-ps stride). The protein conformation

in a unit cell reached an average heavy-atom RMSD of 1.8 Å relative to the

crystal structure (Fig. S2). The experimental unit cell parameters were pre-

served in the simulation (Fig. S3). Two additional 1-ms independent simu-

lations were carried out starting from the same initial coordinates and

randomly assigned velocities.

The same simulation protocol was used for simulating a single PDZ

domain in solution, except for the temperature (289 K) and the compress-

ibility (4:5� 10� 5 bar�1, corresponding to the value for water). A total

of ten simulation replicas of 1 ms each were carried out. The protein confor-

mation in the absence of crystal packing reached an average RMSD of 4.5 Å

relative to the crystal structure (Fig. S4 A).
RESULTS AND DISCUSSION

Recall of CWS for a unit cell

We applied the LAWS pipeline (as described in Methods
and summarized in Section S2) to the 1-ms simulation of
the PDZ domain unit cell (Fig. 3), which contains four sym-
metrically related copies of the protein. In addition, we per-
formed a similar analysis using the global alignment
approach (Fig. 4 A). After we tracked the WS in the simula-
tion (using either LAWS or global alignment), we classified
each WS into one of three groups according its RDF: pre-
served, bulk-like, and obstructed (Fig. 4 B). An example
radial density profile is shown for each type of WS (Fig. 4
C). Preserved WS are characterized by a high radial density
of water in the range from 0 to 1.4 Å when compared with
the control bulk distribution (Fig. 4 C, top). Bulk-like WS
have an RDF similar to the control bulk water, which corre-
spond to the regions of average solvent density (Fig. 4 C,
center). Obstructed WS are located close to the protein
(within the van der Waals radii of protein atoms), preventing
water molecules from occupying these WS regions. This
obstruction results in the RDF shifting to the right (Fig. 4
C, bottom).

We computed the number of WS classified as preserved,
bulk-like, and obstructed in the simulation using both
LAWS and global alignment (Table 1). Using LAWS to
analyze the simulation, we find that 76% of the WS are pre-
served. The results with the global alignment approach
shows a smaller CWS recall: 68% are identified in the simu-
lation as preserved. Two additional simulation replicas show
consistent CWS recall statistics (Table S1).

To test the robustness of our method, namely, estimating
occupancy with radial density gðrÞ, we analyzed the 3D den-
sity peaks computed from the offset vectors~r (Fig. S5). The
CWS recall obtained using the radial density does not differ
significantly from the results obtained using 3D density
maps (Table S2). Irrespective of the method used to
compute the WS occupancy, LAWS shows more WS to be
preserved in the simulation when compared with global
alignment.



FIGURE 4 The LAWS method classifies WS into preserved, bulk-like, and obstructed. (A) A representative structure of the PDZ domain taken from the

simulation (blue) is superimposed onto the crystal structure (gray). WS obtained by LAWS (yellow) are compared with the WS obtained by global alignment

(gray spheres). Some of the LAWS-definedWS are coordinated by interactions with multiple protein chains in the unit cell. However, only a single protein is

shown for clarity. (B) The local protein structure surrounding a representative preserved WS (blue), a bulk-like WS (green), and an obstructed WS (red). In

each panel, the positions of globally alignedWS (gray spheres) and the coordinating side chains (purple) are shown. (C) Radial distribution functions for each

representative water site in (B) compared with the control bulk water distribution are shown. To see this figure in color, go online.

LAWS: Local alignment for water sites
LAWS detects CWSwith higher density compared
with global alignment

To compare the properties of the preserved WS identified
with LAWS with those identified by the global alignment
approach, we computed the combined distance distribution,
PðrÞ, for preserved WS (Fig. 5 A), and the corresponding
RDF gðrÞ (Fig. 5 B). An apparent shift of the PðrÞ distribu-
tion to smaller r is evident for the preserved WS identified
by LAWS compared with global alignment (Fig. 5 A).
This shift leads to a peak in the radial density that is signif-
icantly higher (Fig. 5 B). The analysis of 3D density maps
demonstrates similar results; preserved WS defined by
LAWS have higher 3D density peaks than those defined
by global alignment (Fig. S6). Therefore, water is more
localized around the WS tracked by the LAWS algorithm
than by global alignment. Regarding the CWS with partial
occupancy, all six CWS with partial occupancy are pre-
served in the simulation when analyzed using LAWS, while
TABLE 1 The number of water sites and percentages

classified as preserved, bulk-like, and obstructed using LAWS

and global alignment methods

Method Preserved WS Bulk-like WS Obstructed WS

LAWS 71 (76%) 10 (11%) 13 (14%)

Global alignment 64 (68%) 8 (9%) 22 (23%)
four out of six are preserved when analyzed using global
alignment.
LAWS quantifies perturbation to the local protein
structure

To determine how the deviation of the protein from the crys-
tal structure contributes to the loss of crystal water, we
analyzed the LAWS error for each group of WS. The
LAWS error represents a quantitative measure of the pertur-
bation to the protein region coordinating the WS in a given
MD frame. The definition of the LAWS error (Eq. 2) does
not consider the simulation water molecules, hence the
LAWS error is only determined by the nearby atoms of
the protein. A LAWS error of zero represents an unper-
turbed protein environment relative to the crystal structure.
Well-preservedWS should be characterized by a low LAWS
error. In contrast, a high LAWS error (>3 Å2) represents a
situation where the deviation of the protein structure is so
considerable that the placement of the WS becomes mean-
ingless in a given frame.

The distributions of LAWS errors for each of the three
WS groups are presented as boxplots in Fig. 6. These distri-
butions are exponential, with high variance indicated by the
long whiskers. The preserved WS have a mean LAWS error
(5 SD) of 0:752:2 �A2, the bulk-like WS have a mean value
Biophysical Journal 122, 2871–2883, July 25, 2023 2877



FIGURE 5 Preserved WS detected by LAWS exhibit higher water den-

sity compared with global alignment. (A) Distribution of distances, PðrÞ,
between the nearest neighbor water molecule and (i) preserved WS tracked

with LAWS (red), (ii) preserved WS tracked with global alignment (blue),

and (iii) bulk WS (gray). (B) Corresponding RDF, gðrÞ, with the same color

scheme as (A). For instance, it is � 7�more likely relative to bulk to find a

water molecule within 0.2 Å from the WS as found by global alignment. In

contrast, it is � 17� more likely as found by LAWS. The likelihood of

finding a water molecule within 0.2 Å from the preserved WS relative to

bulk is increased by � 2:4� by using LAWS versus global alignment. To

see this figure in color, go online.

FIGURE 6 LAWS error for each category of WS. The boxplots show the

distribution of LAWS error for preserved (blue), bulk-like (green), and ob-

structed (red) WS. The LAWS error represents the minimized value of Eq. 2

when the WS is optimally placed. In the plots, boxes represent the inter-

quartile range (25th–75th percentile), while whiskers show 5th–95th

percentile of the distribution. To see this figure in color, go online.

TABLE 2 Recall of CWS in the simulation according to the

experimental B-factor using LAWS and global alignment

B-factor range (�A2) 10–20 20–30 30–40 40–50 50–60 60–70

Klyshko et al.
of 1:052:2 �A2, whereas the mean LAWS error for the ob-
structed WS is 1:852:3 �A2. As expected, preserved WS
are characterized by relatively low LAWS errors (<1 Å2)
corresponding to minor deviations of the local structure
compared with the crystal structure. In contrast, high
LAWS errors are more commonly observed in obstructed
and bulk-like WS, where the perturbations are more
significant.

We note that a low LAWS error by itself is not a criterion
for a preserved WS. To illustrate this, we remove the frames
for which the LAWS error exceeds 1 Å2 for each water site.
By only analyzing the frames where WS are well coordi-
nated (with a low LAWS error), we would expect perfect
recall. Nevertheless, the observed recall with excluded
frames is only slightly improved (79% as opposed to 76%
for the entire trajectory). Therefore, a low LAWS error is
a necessary, but not a sufficient, condition for a WS to be
preserved.
No. of CWS in range 12 20 26 23 9 4

Mean LAWS error (�A2) 0.23 0.85 0.88 1.04 0.50 2.45

Percent preserved (LAWS) 100% 75% 81% 74% 67% 0%

Percent preserved

(global alignment)

92% 65% 65% 61% 78% 50%

The 94 CWS were grouped according to B-factor in bins of 10 Å2.
Recall of CWS depends on the experimental
B-factors

In diffraction experiments, B-factors are a measure of the
spread of the electron density caused by atomic fluctuations
2878 Biophysical Journal 122, 2871–2883, July 25, 2023
in the crystal lattice. The experimental CWS (water oxygen
atoms) have associated B-factors, which represent uncer-
tainty in their positions. For this reason, we hypothesize
that the experimental B-factor of a CWS should be related
to the probability of preserving that CWS in the simulation.

To check whether this is the case, we analyzed CWS
recall according to B-factor (Table 2). Using LAWS,
100% recall of CWS was obtained in the lowest B-factor
range (<20 �A2). For comparison, CWS in the middle range
of 20–50 �A2 have a recall of 74–81%, while CWS with high
(>50 �A2) B-factors are poorly preserved (0–67% recall). In
addition, the LAWS error correlates with B-factor, suggest-
ing that the local protein environment surrounding the low
B-factor CWS is structurally less perturbed than for the
higher B-factor CWS.

An advantage of simulating the entire unit cell is the in-
dependent information provided by the four symmetric
copies of each CWS (Fig. 3), which can be used to estimate
statistical errors. Making use of this information, we
computed the number of copies (from 0 to 4) that were clas-
sified as preserved for each of the 94 CWS (Fig. 7). More



FIGURE 7 Experimental B-factors correlate with preserving CWS in the

simulation. The bar chart shows the percentage of the CWS that are pre-

served in 0 (pink), 1–2 (purple), or 3–4 (blue) symmetric copies in the

unit cell. Results are provided for both LAWS and the global alignment

approach. The 94 CWS were grouped according to B-factor in bins of 10
�A2, with the number of CWS in each bin, N, provided. The number of sym-

metric copies that are preserved provides a way to assess statistical uncer-

tainty in each bin, with more copies representing a higher confidence in the

result. To see this figure in color, go online.

FIGURE 8 Lost CWS are coordinated by flexible regions of the protein.

RMSF of Ca atoms represented by the mean value (solid line) over N ¼ 4

protein copies in the unit cell. The shaded envelope shows standard devia-

tion. There are 23 lost CWS which are each coordinated by multiple protein

residues. The number of the lost CWS coordinated by each residue is shown

with red bars. This figure illustrates the data provided in Table S2. To see

this figure in color, go online.

LAWS: Local alignment for water sites
copies of the CWS with low B-factors are found to be pre-
served in the simulation. Similar to Table 2, this trend is
robust regardless of whether LAWS or global alignment is
used to track the WS. Importantly, LAWS shows a higher
consistency across symmetric copies than global alignment
in the low B-factor range.

Taken together, this analysis reveals that the CWS with
lower B-factors, i.e., lower uncertainty, are more likely to
be preserved in the simulation, as opposed to the CWS
with higher B-factors, and higher associated uncertainty in
their positions. This trend is consistent with the findings
of Sun et al., who investigated the preservation of binding
site waters in simulations (22). Similarly, we analyzed local
3D density peaks for preserved WS, and a negative correla-
tion between peak height and experimental B-factor is found
(Fig. S6).

Interestingly, LAWS demonstrates a low recall of the
highest uncertainty CWS, with B-factor >60 �A2 (Table 2).
These sites also have the highest LAWS error, which sug-
gests that the surrounding protein structure is highly per-
turbed. It is unclear how many of these sites are expected
to be captured by simulation, since B-factors of >60 �A2

are close to the bulk threshold for this system. To understand
these effects in more detail, we analyzed the locations of
CWS that were lost (not preserved) in the simulation.
Lost CWS are coordinated by flexible regions of
the protein

In the analysis carried out so far, we have used LAWS to
quantify CWS recall. Next, we examine how the preserva-
tion of a water site is affected by the surrounding protein
structure. The key similarity between lost CWS appears to
be tied to their location relative to the protein. The lost
CWS are mostly coordinated by the flexible structural
elements, including the loops and the C-terminal tail
(Table S3). These protein segments have a higher root-
mean-squared fluctuation (RMSF) in the simulation
(Fig. 8), indicating that the loss of CWS can be attributed
to the higher mobility of the protein regions coordinating
these WS. The relatively high LAWS error observed for
bulk-like and obstructed WS (Fig. 6) suggests that the flex-
ible regions of the protein also experience significant devi-
ations relative to the crystal structure, leading to a loss of
water coordination. To understand whether the loss of coor-
dination is more pronounced at the protein-protein inter-
faces or in the regions within the protein, it is useful to
consider the system where the protein is not constrained
by crystal contacts.
Recall of CWS for a single PDZ domain in solution

In addition to simulating a crystal unit cell, which is the most
realistic system for quantifying recall of CWS, we also car-
ried out a set of simulations of the same PDZ domain in solu-
tion (10 replicas � 1 ms each, see Methods). Unsurprisingly,
the protein in solution exhibits a much higher deviation from
the crystal structure (RMSD ¼ 4.5 Å, Fig. S4 A), compared
with the crystal environment (RMSD ¼ 1.8 Å, Fig. S2). In
addition, the protein is more flexible in solution (Fig. S4 B)
compared with the crystal environment (Fig. 8). Since both
sets of simulations start from the same crystal structure, we
Biophysical Journal 122, 2871–2883, July 25, 2023 2879
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investigated whether the recall of CWS decreases over time
as the protein structure changes.

We analyzed the convergence of CWS recall with
increasing simulation time for both systems (solution,
Fig. 9 A, and crystal, Fig. 9 B). Using the global alignment
approach, a significant decrease in CWS recall is observed
during the course of the simulation for the protein in solution
(Fig. 9 A). This decrease of CWS recall happens because the
structure is drifting away from the initial crystal structure
throughout the simulation (Fig. S4A). In contrast, in the crys-
tal environment, the RMSD curve is flat (Fig. S2) and no sub-
stantial change is observed in the CWS recall over time
(Fig. 9 B). The CWS recall determined using LAWS is
consistent over time for both solution and crystal simulations.

Using global alignment, the average recall of CWS is
only 5% in the solution simulation; however, when using
LAWS to track WS in solution, the time-averaged CWS
recall is much higher—63% (dashed lines in Fig. 9 A).
Together, these results demonstrate that the global align-
ment approach is strongly affected by changes in protein
structure. Alignment errors cause WS to overlap with the
protein or to be located in bulk water, resulting in them be-
FIGURE 9 Recall of CWS in solution and crystal simulations. The CWS recal

using LAWS and global alignment for the PDZ domain (A) in solution, (B) in a c

(C) The crystal structure of the PDZ domain in surface representation with loc

percent of lost CWS in the two groups (interchain and intrachain) as found in

are estimated via a block averaging method with a window size of 0.2 ms. There

25 are common. To see this figure in color, go online.

2880 Biophysical Journal 122, 2871–2883, July 25, 2023
ing classified as either obstructed or bulk-like. LAWS, on
the other hand, is effective in eliminating these errors and
shows a consistent CWS recall for both systems. The
LAWS errors across all CWS (mean5 SD) are higher in so-
lution (2:059:9 �A2) than in crystal (0:952:2 �A2), demon-
strating lower coordination of CWS provided by a more
perturbed protein environment in solution. Using LAWS,
we find that more CWS are preserved in the crystal simula-
tion compared with the protein in solution (76% vs. 63%,
red dashed lines in Fig. 9, A and B). We hypothesized that
many of the CWS are stabilized by contacts in the crystal
lattice, which might affect the recall statistics.

To assess the contribution of crystal contacts, we consid-
ered two types of CWS in the crystal structure: 1) intrachain
CWS, i.e., those making contacts with a single protein
domain, and 2) interchain CWS found at the interface
between symmetric copies of the proteins (Fig. 9 C).
We compare the fraction of lost CWS for each group
in the crystal and solution simulations. Since the experi-
mental B-factors of these two groups do not differ signifi-
cantly, with Bintra ¼ 36513 �A2 ðn ¼ 38Þ and Binter ¼
36512 �A2 ðn ¼ 56Þ, we can eliminate the effect of
l with increasing cumulative simulation time (0.2 ms, 0.4 ms, etc.) computed

rystal unit cell. Dashed lines indicate average recall over the 1-ms trajectory.

ations of interchain (green) and intrachain CWS (yellow) shown. (D) The

crystal and solution simulations (obtained using LAWS). Statistical errors

are 28 preserved intrachain CWS in solution, and 29 in a crystal, of which



LAWS: Local alignment for water sites
B-factor as a contribution to the CWS recall in this compar-
ison. The fraction of lost intrachain CWS in the crystal
(24%) is consistent with the solution (26%) simulations
(Fig. 9 D). The set of preserved CWS in the crystal simula-
tion is very similar to the set of preserved CWS in solution
(29 preserved CWS in the crystal, 28 preserved CWS in so-
lution, and 25 CWS are common between the two sets).
While a comparable number of the interchain CWS are
lost in crystal simulations (25%), significantly more of
them are lost in solution (45%) (Fig. 9D). These results sug-
gest that the effect of the protein environment (crystal versus
solution) is critical for the interchain CWS. The interchain
coordination is specific to protein crystals and significantly
contributes to the preservation of CWS in simulations. How-
ever, the preservation of intrachain CWS is not strongly
affected by the protein environment. These results highlight
a powerful application of the LAWS method—in particular,
that LAWS can be applied to simulations of proteins in so-
lution to analyze ordered waters located in pockets and co-
ordinated by residues of the same domain.
CONCLUSIONS

In this study, we discuss the limitations of existing global
alignment approaches for analyzing crystallographic water
in MD simulations. Namely, these methods are only suit-
able for cases where the protein conformation remains
close to the crystal structure. As the deviation from the
crystal structure increases, global alignment introduces
larger and larger errors in the positions of WS. To address
this limitation, we developed the LAWS method, which be-
comes more advantageous when protein regions experience
significant deviations from the crystal structure since this
approach does not suffer from alignment errors. To the
best of our knowledge, the only study that implemented a
similar local alignment approach was Caldararu et al.
(13). We build upon their approach by computing the radial
density profile of water as the main criterion to determine
if a water site is preserved (instead of relying on data-
driven clustering). In addition, our method utilizes a refer-
ence (bulk WS) to decide whether or not a particular CWS
is preserved, whereas their method does not. Unique to
our method, the LAWS error serves as a measure of
protein structural perturbation around each WS. Finally,
compared with the previous local alignment method,
LAWS takes into account the CWS coordination by multi-
ple symmetrically related protein monomers in the crystal
lattice (Fig. 2 A). This consideration is critical since crystal
contacts contribute to the stability of many CWS in a pro-
tein crystal.

Applying the LAWS method to a 1-ms simulation of a
protein crystal, we demonstrate that LAWS improves the
recall of high-confidence (low B-factor) CWS and shows
an increased density of water surrounding the CWS (Figs.
5 and S4) compared with global alignment. Previous studies
reported the CWS recall as the fraction of water density
peaks detected within 1.4 Å of their positions in the crystal
structure (10–13). They found that CWS recall varied from
40 to 100% depending on the system, simulation setup, and
the method used for analysis. To place our results in the
context of these studies, we provide analogous recall statis-
tics computed using 3D density maps: 70% with LAWS vs.
60% with global alignment (Table S2). This is broadly
consistent with the earlier studies that did not restrain pro-
tein dynamics.

The question is: What recall of CWS is realistic, given
the challenges of accurately replicating the experiments?
The lack of consensus between independent experiments
in the positions of CWS (46–49) suggests that complete
recall of all CWS in simulations is most likely overly
optimistic and should not be expected. The construction
of the MD simulation system on its own has multiple chal-
lenges that can affect the accuracy of modeling crystallo-
graphic water. For example, the resolution of the starting
structure plays a crucial role in the quality of simulations
(50). In addition, the correct assignment of protonation
states (51) and the inclusion of crowding agents in the crys-
tal lattice (52) can be challenging. Finally, a limited
sampling of protein conformational space can be an
obstacle for simulations to provide equilibrium distribu-
tions. Despite all these difficulties, we observe 100% recall
of the high confidence (low B-factor) CWS using LAWS in
this study.

While the current work has focused on presenting the
LAWS algorithm as a means to study how well crystallo-
graphic waters are preserved in simulation (e.g., for force
field and model testing), our methodology has broader ap-
plications. The coordinate-based nature of LAWS allows
analysis of dynamic information, such as residence times
of individual water molecules located in WS. The founda-
tion of LAWS is a tracking algorithm that can easily be
generalized to track various ions, small molecules, and li-
gands. With the addition of further constraints, LAWS
could be extended to track the interactions of proteins
with larger molecules as well. Furthermore, an important
application of LAWS may also be in the study of functional
water networks in proteins. Experimentally resolved CWS
have been used to study water networks, which have been
found to be highly conserved and important to protein func-
tion (6,53). Perturbations to these networks have also been
implicated in human disease (54). While we have found that
many of the CWS are stabilized by interactions in the crys-
tal lattice, a subset of the experimental CWS appears to be
intrinsic to the protein structure, as demonstrated by the
consistent preservation of a set of CWS in both crystal
and solution simulations. What this suggests is that, by
applying LAWS to study experimentally resolved waters
of proteins in solution simulations, LAWS can be a power-
ful tool to study water networks that underlie protein
function.
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SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.09.012. Simulation data is available at https://doi.org/10.5281/

zenodo.6478270. The implementation of the LAWS algorithm is available

at https://github.com/rauscher-lab/LAWS.
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